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Abstract
We investigate liquid crystalline phases with nematic order at 1

3 -filling of the
valence Landau level (LL). We generalize Laughlin’s fractional quantum Hall
(QH) effect wavefunction at ν = 1

3 to include anisotropic nodal distribution by
modifying the Jastrow factors. Lengthy Monte Carlo simulations are then used
to determine with unprecedented accuracy the (anisotropic) pair distribution
function g(r) and static structure factor S(q) for various degrees of anisotropy.
The determination of the correlation energies at 1

3 -filling of an arbitrary LL
is then performed by using standard mappings of g(r) and S(q) to higher
LLs. Our results indicate that while Laughlin’s state is stable in the lowest LL,
there are regions of instability towards nematic order in higher LLs. Possible
connections to the recently discovered QH liquid crystals are discussed.

1. Introduction

There has been renewed interest in the many-body physics of two-dimensional electron
systems (2DES) in a strong perpendicular magnetic field, when the topmost or valence
Landau level (LL) is partially filled. Because of the quenching of the kinetic
energy, the tremendous mobilities achievable in the interfacial region of state-of-the-art
GaAs/AlxGa1−xAs heterostructures, and the relative enhancement of interactions due to
the reduced dimensionality, subtle electronic correlations are readily observable and new
phases become evident as sample quality improves and temperatures are lowered. It is
quite remarkable that over the last 20 years, 2DES have become one of the most important
benchmarks in both experimental and theoretical physics, generating an extraordinary
number of important new ideas [1], such as: the existence of fractionally charged
quasiparticles [2], topological quantum numbers [3], chiral Luttinger liquids [4], and composite
particles [5].

Recently, a number of unexpected phenomena were observed in the transitional regions
between different plateaus of the Hall conductance of LLs with index L � 2: near half-
filling of the valence LL, extreme anisotropy has been measured in the magnetotransport
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below temperatures of about 100 mK [6–8], accompanied by smooth non-linearities of the
conductance [6]. In addition, re-entrant integer quantum Hall effect (RIQHE) regions with
striking breakdown features and new phase transitions (presumed to be quantum in origin [9])
have been seen near 1

4 -filling of the valence LL [10]. The anisotropic behaviour has been
attributed to the formation of a nematic phase of the 2DES which then undergoes a nematic-to-
isotropic transition at higher temperatures [9,11]. Similarly, the re-entrant regions are believed
to be ‘bubble phases’ similar to Wigner crystals, but with several electrons per bubble, or
possibly new electronic hexatic states [9].

The aim of our work is to study these numerous liquid crystalline phases present in
partially filled LLs by means of many-body trial wavefunctions with a nematic symmetry.
Previously we reported on approximate hypernetted chain (HNC) methods used to consider
similar broken-rotational-symmetry (BRS) states at 1

3 -filling [12] and 1
2 -filling [13] of a LL,

where we found that isotropic states (Laughlin for ν = 1
3 , Rezayi–Read for ν = 1

2 ) are stable
in the lowest Landau level (LLL), but BRS states were favourable for L � 1. Whereas these
results are indeed compelling, it is highly desirable to obtain independent verification of these
conclusions by alternate means, considering the approximate nature of the HNC, the small size
of the energy differences obtained, and the fact that Musaelian and Joynt (MJ) had previously
conjectured that BRS states could be possible at ν = 1

3 (in the LLL) [14]. In this paper we
present an essentially exact Monte Carlo (MC) determination of the optimal phase (isotropic
versus nematic) for a 2DES with a 1

3 -filled topmost LL described by a generalized MJ [14]
wavefunction of the form

�α(r1, . . . , rN) =
N∏
i<j

(zi − zj )(zi − zj − α)(zi − zj + α) exp

(
− 1

4

N∑
k=1

|zk|2
)
, (1)

where zj = xj +iyj is the complex 2D coordinate of the j th electron andα is a complex number
(we work in units of the magnetic length: l20 = h̄/eB = 1). This wavefunction represents a
homogeneous liquid state with filling factor ν = 1

3 , lies entirely in the LLL (below we describe
the generalization to higher LLs), and for α �= 0 has nematic order (for α = 0 we recover
Laughlin’s wavefunction [2], which is obviously isotropic). This wavefunction represents,
therefore, a good starting point for considering nematic QH systems. Note, however, that
QH nematics were observed for 1

2 -fillings rather than 1
3 -fillings of the valence LLs. Fermi

HNC analysis [13] of the 1
2 -filling case shows considerable similarities to the latter case, while

extensive and extremely time-consuming MC simulations are currently being undertaken [15].
The availability of MC and HNC methods for both filling factors is, in any case, quite desirable
for a direct comparison and for a systematic study of the energy dependence of BRS states for
diverse physical parameters (LL index, width of the 2DES, etc). In addition, the possibility
of BRS states for ν = 1

3 is intriguing in itself, since for α �= 0 highly damped low-energy
modes exist [11,16], strongly modifying the dynamics and possibly suppressing the fractional
quantum Hall effect (FQHE).

In order to determine the optimal electronic configuration (using the anisotropy-generating
parameter α variationally), we calculated the correlation energies for families of states
described by equation (1) by averaging over billions of MC-generated configurations. Eighty to
800 electrons were used in the MC runs and the results were extrapolated to the thermodynamic
limit. To a very high degree of confidence, we find that Laughlin’s state (isotropic: α = 0)
is favourable in the lowest and first excited LLs for all sample widths probed in [12] (LLL
only) and [14], in partial agreement with our previous HNC results [12]. At higher LLs BRS
states are favourable for a wide range of sample widths, in good agreement with our HNC
results [12].
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In section 2 we present the basic theoretical calculations needed to determine the stability
of an isotropic or BRS state. In section 3 we briefly discuss the MC method used in the context
of the BRS wavefunction (equation (1)). The results for the BRS state in the LLL and their
extension to higher LLs are discussed in section 4.

2. Basic theory

In this work we propose to study the stability of different states by using trial wavefunctions of
the form of equation (1). We perform this analysis by comparing the energy in each of these
states to find the optimum value for the anisotropy-generating parameter α.

We first consider the situation in the LLL, namely the state with ν = 1
3 . Since the BRS

wavefunction is completely in the LLL, the kinetic energy per particle is quenched at the lowest
cyclotron energy:

1

N

〈�α|K̂|�α〉
〈�α|�α〉 = 1

2
h̄ωc, (2)

where ωc = eB/m is the cyclotron frequency (for higher LLs, the kinetic energy is still
quenched, albeit at a higher value). The potential, or correlation energy per electron is

Eα = 1

N

〈�α|V̂ |�α〉
〈�α|�α〉 , (3)

where V̂ represents the electron–electron, electron–background, and background–background
interaction. While this quantity can be computed directly using standard MC sampling
(section 3), a new MC run has to be performed if the potential V needs to be changed (e.g. by
considering a different sample width in the third dimension, or a particular screening length).
In addition, a new MC sampling would also be needed for each LL (and the correlated many-
body wavefunction is quite cumbersome). Fortunately, for two-body potentials, this correlation
energy may also be written as

Eα = ρ

2

∫
d2r V (r)[g(r) − 1], (4)

where g(r) is the (angle-dependent) pair distribution function given by

g(r) = N(N − 1)

ρ2

∫
d2r3 · · · d2rN |�α(r1, . . . , rN)|2∫
d2r1 · · · d2rN |�α(r1, . . . , rN)|2 , (5)

where r = r2 −r1, and which satisfies the normalization condition: ρ
∫

d2r [g(r)−1] = −1.
For an ideal 2D sample the interaction is a pure Coulomb potential V (r) 	 e2/(εr), while
in samples with finite thickness a reasonable choice is the Zhang–Das Sarma (ZDS) potential
V (r) = e2/(ε

√
r2 + λ2) [17], where λ is of the order of the sample thickness. Alternatively,

the correlation energy can be computed in reciprocal space:

Eα = 1

2

∫
d2q

(2π)2
Ṽ (q)[S(q) − 1], (6)

where Ṽ (q) is the 2D Fourier transform (FT) of V (r):

Ṽ (q) =
∫

d2r e−iq·rV (r) = 2π
∫ ∞

0
dr rJ0(qr)V (r), (7)

and the static structure factor S(q) is related by FT to g(r):

S(q) − 1 = ρ

∫
d2r e−iq·r[g(r) − 1]. (8)
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Figure 1. The pair distribution function at ν = 1/3: (a) and (b) (α = 0, 2 respectively):
surface and contour plots of g(r); (c) and (d) (α = 0, 2 respectively): dotted curves: g(r, θ)

for various θ ∈ [0, 2π ]; full curve: angle-averaged g(r); note the discrete nodes of g(r, θ) at
r = α, θ = θα, θα + π (θα = 0 in this case). For the plots above, 1010 MC steps were performed
for each α on 200 electrons.

Although g(r) and S(q) are both angle dependent (e.g. see figures 1 and 2), since the
interaction potential is centrally symmetric, the energy Eα depends only on the angle-averaged
pair distribution function or static structure factor defined as

g(r) =
∫ 2π

0

dθ

2π
g(r), S(q) =

∫ 2π

0

dθq
2π

S(q). (9)

The determination of either the pair distribution function or the static structure factor can be
readily computed by MC simulation (section 3), but generally this is a time-consuming process
that needs to be performed for each LL. However, it is known that if transitions to other LLs
are neglected (i.e. a single-LL approximation), g(r) and S(q) at higher LL are simply related
to those at the LLL (L = 0) by means of a convolution or product respectively. We will apply
this approximation (which, moreover, quenches the kinetic energy in higher LLs as well). It is
then sufficient to compute these distribution functions only in the LLL and then the correlation
energy per electron in an arbitrary LL with index L is given by

EL
α = 1

2

∫
d2q

(2π)2
Ṽeff(q)[S(q) − 1], (10)

where Ṽeff(q) ≡ Ṽ (q)[LL(q
2/2)]2, LL(x) are Laguerre polynomials, and S(q) is calculated

in the LLL (L = 0).
In what follows we compute g(r) and S(q) through MC simulations with a probability

distribution given by |�α(r1, . . . , rN)|2 (equation (1)).
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Figure 2. The static structure factor at ν = 1/3: (a) and (b) (α = 0, 2 respectively): surface
and contour plots of S(q); (c) and (d) (α = 0, 2 respectively): dotted curves: S(q, θq) for various
θq ∈ [0, 2π ]; full curve: angle-averaged S(q); note, for α �= 0, the presence of directional peaks
in S(q) consistent with a nematic structure. The static structure factors were calculated from the
pair distribution functions (see figure 1) using equation (8).

3. Monte Carlo determination of the pair correlation function, static structure factor,
and correlation energy

In order to determine the pair distribution function g(r), we perform standard Metropolis
MC [18] simulations of the 2DES on a plane with a probability distribution given by

P(r1, . . . , rN) ≡ |�α(r1, . . . , rN)|2

=
N∏
i<j

|(zi − zj )(zi − zj − α)(zi − zj + α)|2 exp

(
− 1

2

N∑
k=i

|zk|2
)

= exp

[ N∑
i<j

log(ri − rj )
2 + log(ri − rj − α)2 + log(ri − rj + α)2 −

N∑
k=1

r2
k

2

]
,

(11)

where we omitted irrelevant normalization constants.
For each α under consideration, we start by uniformly distributing N electrons inside a

disc of radius R 	 √
2N/ν. In each MC step, a random electron is moved a fixed distance

d (chosen at the beginning of the run so that approximately 50% of the MC attempts are
successful) in a random angle. Using the standard Metropolis algorithm [18], we accept the
move if P new/P old is bigger than a random number between 0 and 1, and otherwise reject
it. After an initial ‘thermalization’ process of several million MC steps, we compute g(r)
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Figure 3. The angle-averaged pair distribution function g(r) (panel (a)) and static structure factor
S(q) (panel (b)).

by counting how many electrons are present in a discrete Cartesian array centred around
each other electron; this counting process is averaged over several billion MC steps requiring
several hours to a few days of computation on a state-of-the-art Alpha 21 264 workstation.
Eighty to 800 electrons were used in the MC runs and the results were extrapolated to the
thermodynamic limit. Care is taken so that only electrons in the ‘bulk’ of this system are
counted (by excluding a ring near the periphery of the disk). Direct calculations of the
correlation energy in the LLL for various potentials were also performed to further verify
our results.

4. Results and discussion

In this work we applied MC methods to study BRS states at a 1
3 -filling of an arbitrary LL (in the

single-LL approximation). Extensive MC simulations in the disc geometry have allowed us to
determine to a very good accuracy the pair distribution function and the static structure factor.
In order to compare the isotropic (Laughlin’s, α = 0) state with the BRS states (α �= 0) we
studies their properties for various αs with magnitudes between 0 and 3 (in general α = |α|eiθα ;
we considered θα = 0 without loss of generality).

In figure 1 we plot the pair distribution function g(r) for α = 0 and 2. It is interesting
to note, for α �= 0, the noticeable angle dependence of g(r), and the splitting of the triple
node at the origin to a simple node at the origin and additional simple nodes at r = α

and angle θ = θα, θα + π (θα = 0 in this case). Figure 2 shows the static structure factor
S(q) for α = 0 and 2, calculated from g(r) by means of the FT defined in equation (8).
Note for α �= 0 the presence of directional peaks in S(q) consistent with a nematic
order.

Due to the rotational symmetry of the interaction potential, from the energetics point of
view (see equations (4), (10) and (9)), the dependence of the angle-averaged g(r) and S(q)

is a major consideration. Figure 3 shows the angle-averaged pair distribution function and
structure factor for α = 0, 1, 2, and 3. As α is increased the major peak of g(r) becomes
less pronounced and shifts towards higher radii, and simultaneously a shoulder develops and
becomes clearly visible near r = 2 for α = 3; finally the small-r behaviour shifts from
g(r) ∝ r6 (for α = 0) to r2 for α �= 0. The dependence of S(q) on α is also quite noticeable:
as it is increased the peak narrows and shifts towards smaller q, but there is no change in the
small-q behaviour.

One can compute the correlation energy per particle directly from equations (4), (6),
or (10) to determine the energy per electron for arbitrary values of the BRS parameter α, the
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Figure 4. Correlation energy per particle in BRS states with α = 1, 2, and 3 relative to the
isotropic (α = 0) state for various Landau levels L as a function of the short-distance cut-off λ (see
the comments preceding equation (6), and [17]). The energies are in units of e2/(εl0). (a) LLL
(L = 0); (b) first excited LL (L = 1); (c) second excited LL (L = 2); (d) detail of (c). Note that
there are ranges of λ for which BRS states are favourable for the last case (L = 2).

2D system width λ, and LL index L. The following simplified formula can be used, in view
of equation (9):

EL
α (λ) = 1

4π

∫ ∞

0
dq qṼ (q, λ)

[
LL

(
q2

2

)]2

[S(q) − 1], (12)

where Ṽ (q, λ) = (2πe2/εq) exp(−λq) is the 2D FT of the ZDS interaction potential [17].
This allows straightforward calculations to be extended to any LL.

Figure 4 shows the energy difference between BRS states with α = 1, 2, and 3, and the
isotropic state with α = 0. Our findings indicate that in the LLL (L = 0) the isotropic Laughlin
state is stable for allλ that we considered, since allα �= 0 states have higher energies (top panel).
This results are in significant disagreement with those of [14] and coincide quantitatively with
our previous HNC calculations [12]. We also observe stability of the isotropic state in the first
excited LL1 (L = 1, ν = 2 + 1

3 ). The situation changes considerably in the second excited

1 Our previous HNC calculation [12] predicted a BRS instability forL = 1. MC results should be, however, preferred,
given the approximate nature of the HNC methods. Note that for each LL there are two spin sub-bands. The case
under consideration ( 1

3 -filling of the valence LL) therefore allows ν = 1
3 and ν = 1 + 1

3 in the LLL (L = 0), ν = 2 + 1
3

and ν = 3 + 1
3 for L = 1, etc. For simplicity we only explicitly consider partial fillings of the lower spin sub-band,

but most of the results can be readily applied to the upper sub-band as well.
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LLs (L = 2, ν = 4 + 1
3 (see footnote 1)) where, for a considerable range of the short-distance

cut-off λ, BRS states are found to have lower energies and the incompressible Laughlin-like
state is unstable towards a nematic state (see lower panels of figure 4), also in agreement
with [12].

At this point it is important to comment on how precise our determination of the
energy differences is. The only significant sources of error in our calculations arise from
the statistical errors due to finite sampling and the discrete nature of the grid used in the
determination of the pair distribution function g(r) (these errors are inherent to all MC
methods). The errors propagate to the static structure factor S(q), and are amplified at large
q by the Laguerre polynomials in equation (10). The error bars in figure 4 are estimated
by comparing our S(q) to analytical approximations calculated (for the isotropic state) by
Girvin et al [19].

5. Conclusions

In conclusion, we have applied MC methods to study possible BRS states for 1
3 -filling of an

arbitrary LL. We find that the isotropic Laughlin-like state is stable for the lowest (L = 0)
and first excited (L = 1) LL, whereas a BRS instability is possible in the second excited
(L = 2) LL. Since BRS states are gapless and heavily damped [11,16] this may offer a simple
explanation for the absence of the FQHE in higher LLs. While these results are quite interesting
and compelling, the connection to recent observations of liquid crystalline states [6–11] in
half- and quarter-filled LLs requires a more sophisticated treatment. One possibility is to use
anisotropic generalizations of the Rezayi–Read wavefunction [20] valid for a 1

2 -filled LL:

�α(r1, . . . , rN) = P̂L

N∏
j<k

(zj − zk + α)(zj − zk − α) exp

(
−

N∑
k=1

|zk|2/4

)
det[ϕk(ri )], (13)

where P̂L represents a projector onto the Lth LL. In [13] we explored such states using the
Fermi HNC approximation and found similar results. A verification of these results using
the more accurate MC procedures of this paper using a probability distribution derived from
equation (13) is currently under way [15].
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